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Gleason-Type Theorem for Linear Spaces over the
Field of Four Elements
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We prove an analog of the famous Gleason theorem for additive functions on
the orthomodular poset of all projections defined on an n-dimensional linear
space over the field consisting of four elements. An essential part of the proof
consists in a computer calculation.

1. INTRODUCTION

Let F and G , F be two fields, X be a finite-dimensional linear space

over F, and P(X ) be the orthomodular set of all (linear) projections on X.
Let us consider a G-valued measure m : P(X ) ª G which is additive, i.e.,

m (P 1 Q) 5 m (P) 1 m (Q) for P,Q P P(X ) with PQ 5 QP 5 0. Our goal

is to extend (when possible) the function m to a G-valued additive functional
defined on the linear space over G generated by P(X ).

Such a theorem was proved when G and F coincide with the set Q of

rationals or a residue field (Mushtari, 1995). But, for extending the result of

(Mushtari, 1989) to some classes of topological linear spaces we need to

consider the case G 5 Q and F being an extension of Q. Unfortunately, we

have not managed to prove such a theorem. In this paper, we try to elaborate
the technique we need in a simpler case.

2. THE THEOREM

Theorem 1. Let X be a finite-dimensional linear space over the field F4

consisting of 4 elements, dimX $ 3, F2 be the field {0, 1}, and m : P(X ) ª
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F2 be a measure. Then m admits an F2 linear extension to the set UL(X ) of

all F4-linear operators with the trace belonging to F2.

Proof. The proof essentially depends upon the results of a computer

calculation. We omit the calculation and only present its result. As in the

proof of the classical Gleason theorem, we only have to consider the 3-
dimensional case. We notice also (Mushtari, 1995) that we have to really

prove that the restriction of m to the set of all 1-dimensional projections is

uniquely determined by the values of m on a fixed Hamel basis in the F2-

linear space UL(X ). Note that the F2-dimension of UL(X ) is equal to 17.

Step 1. The case X 5 F 3
2. The number of one-dimensional projections

equals 28. The number of all bases equals 28. Every such basis {e, f, g}

(together with its biorthogonal one {e8, f 8, g8} defines the three mutually

orthogonal projections e8. J e:x j e8(x)e, f 8 J f 8, and g8 J g. Since m (e8
J e) 1 m ( f 8 J f ) 1 m (g8 J g) 5 m (Id), every such basis defines an

equation for m . It can be readily verified that the rank of this system is equal

to 19. So, the values of m on some nine linearly independent projections

determine the m on P (F3
2) uniquely.

Step 2. The case X 5 F 3
4. What does Step 1 provide? Let us consider

an arbitrary basis {e, f, g} in F 3
4 with the biorthogonal {e8, f 8, g8} and the

set P2({e, f, g}) of all projections P of the form P 5 ( a 81e8 1 a 82f 8 1 a 83g8)
J ( a 1e 1 a 2f 1 a 3g), where all a i belong to F2. By Step 1, m is uniquely

determined on P2 ({e, f, g}) by its values on nine basic projections, for

example:

P1 5 e8 ^ e, P2 5 (e8 1 f 8) ^ e, P3 5 (e8 1 g8) ^ e

P4 5 ( f8 1 e8) ^ f, P5 5 f8 ^ f, P6 5 ( f8 1 g8) ^ f

P7 5 (g8 1 e8) ^ g, P8 5 (g8 1 f 8) ^ g, P9 5 g8 ^ g

Now we have to prove that the values of m on {P i: i # 9}, where {e,
f, g} e F 3

2 and on some additional eight projections uniquely determine m
on the whole P2(F

3
4).

Denote F4 5 {0, 1, i, i 2 1}, wherein i 2 5 i 1 1 5 i 2 1, i 2 2 5 i 2 1 1 1

5 i. Let us consider all bases in F 3
2. To any such basis {e, f, g}, we add the

six bases in F 3
4, namely

{ie, f, g}, {e, if, g}, {e, f, ig}, {e, if, ig}, {ie, f, ig}, {ie, if, g}

and add the set PÄ 2 ({e, f, g}) of 12 projections, namely,

PÄ 1 5 (i 2 1e8 1 f 8) ^ ie, PÄ 2 5 (i 2 1e8 1 g8) ^ ie, PÄ
3 5 (i 2 1f 8 1 e8) ^ if

PÄ 4 5 (i 2 1f 8 1 g8) ^ if, PÄ
5 5 (i 2 1g8 1 e8) ^ ig, PÄ

6 5 (i 2 1g8 1 f 8) ^ ig
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PÄ 7 5 i 2 1e8 ^ (ie 1 f ), PÄ
8 5 i 2 1e8 ^ (ie 1 g), PÄ 9 5 i 2 1f 8 ^ (if 1 e)

PÄ 10 5 i 2 1f 8 ^ (if 1 g), PÄ 11 5 i 2 1g8 ^ (ig 1 e), PÄ 12 5 i 2 1g8 ^ (ig 1 f )

We have the six sets P2({ie, f, g}), P2({e, if, g}), . . . , P2({ie, if, g}).

It is easy to see that bases (of nine elements) in these sets can be chosen so

that all their elements belong to {P i: i # 9} ø PÄ 2 ({e, f, g}). We denote by
PÄ 2({e, f, g}) the union of all these six sets and denote PÃ2({e, f, g}) 5 PÄ 2({e,
f, g}) ø P2({e, f, g}). We denote by P the direct sum of all sets PÄ 2({e, f,
g}) for all bases in F 3

2. There are 28 bases in F 3
2. The 12 basic elements

correspond to every basis. So, P contains 28 3 12 elements.

Now, we describe the equations which connect the values of m on P.
Let us consider a projection P 5 (i 2 1 a8 1 b8) J ia, wherein a, b P F 3

2,

a8 P (F 3
2)8, b8(a) 5 0. If P belongs to PÃ2({x, y, z}), then m (P) is uniquely

determined by the values of m on PÄ 2({x, y, z}) (and on the set {P1: i # 9}).

It is easy to see that P belongs to seven sets of projections P2(x1, x2, x3),

where either a 5 xi , a8 5 x8i , b P Lin(xj , xk: j, k Þ i), or b 5 xi , a P Lin(xj ,

xk: j, k Þ i), a8 e Lin(x8j , x8k: j, k Þ i). The P may be represented as P 5 [(a
1 b) 1 ib] J a8 and thus belongs to seven other sets, P2{(x, y, z)}. We can

calculate m (P) by using 14 different bases. This gives 13 equations which

connect the values of m on P. Eventually, we obtain 13 3 84 different

equations. The computer calculation shows that the rank of the system is

equal to 328.

We now summarize the result of computing. Denote

@Ä 2 5 ø {@Ä 2({e, f, g}): {e, f, g} is a basis in F 3
2}, @Ã2 5 @Ä 2 ø @2

The m on PÃ2 is uniquely determined by the values of m on every basis of
17 elements [9 basic elements in P2 and 8 ( 5 336 2 328) basic elements

in P].

Since {1, i} is a basis in F4, every one-dimensional projection on F 3
4

admits the representative P 5 (i 2 1 a8 1 b8) J (ia 1 b), where a, b P F 3
2

and a8, b8 P (F 3
2)8 satisfy one of the following:

(i) b8(a) 5 a8(b) 5 b8(b) 5 0, a8(a) 5 1

(ii) b8(a) 5 a8(b) 5 b8(b) 5 0, b8(b) 5 1
(iii) b8(a) 5 a8(b) 5 b8(b) 5 a8(a) 5 1

(iv) b8(a) 5 a8(b) 5 1, b8(b) 5 a8(a) 5 0

It is easy to see that PÃ2 consists of all projections (i 2 1 a8 1 b8) J (ia 1
b) satisfying (i) or (ii). The case (iii) can be reduced to (i) or (ii). Actually,

by using i 5 i 2 1 1 1 and i 2 1 5 i 1 1, we obtain

P 5 (i 2 1a8 1 b8) ^ (ia 1 b) 5 [i 2 1(a8 1 b8) 1 a8] ^ [i (a 1 b) 1 a]
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The case (iv) is a little more difficult. It is more convenient to represent

P as P 5 (i 2 1 y8 1 x8) J (ix 1 y), where x, y P F 3
2, x8, y8 P (F 3

2)8, y8(x)

5 x8( y) 5 0, and x8(x) 5 y8( y) 5 1. Obviously, in this case, P is orthogonal
to P1 5 (i 2 1 x8 1 y8) J (iy 1 x). Consider the basis {x, y, z} in F 3

2 with

the biorthogonal basis {x8, y8, z8}. Also consider the basis { j 5 ix 1 y, h
5 iy 1 x, z 5 z} in F 3

4 with the biorthogonal basis { j 8 5 i 2 1 y8 1 x8, h 8
5 i 2 1x8 1 y8, z 8 5 z8}. Now, we construct a basis in P2({e, f, g}) whose

elements belong to PÃ2. This proves that m (P) is uniquely determined by the

values of m on PÃ2. Actually, the basis we need consists of the following
projections:

P1 5 ( j 8 1 h 8) ^ j 5 (x8 1 y8) ^ [i (x 1 y) 1 x]

P2 5 ( j 8 1 h 8) ^ h 5 (x8 1 y8) ^ [i (x 1 y) 1 y]

P3 5 ( j 8 1 z 8) ^ ( h 1 z ) 5 [i 2 1y8 1 x8 1 z8] ^ [iy 1 x 1 z]

P4 5 ( h 8 1 z 8) ^ ( j 1 z ) 5 [i 2 1x8 1 y8 1 z8] ^ [ix 1 y 1 z]

P5 5 z 8 ^ z

P6 5 ( j 8 1 z 8) ^ z

P7 5 ( z 8 ^ ( j 1 z )

P8 5 ( h 8 1 z 8) ^ z

P9 5 z 8 ^ ( h 1 z )

(Observe that we have made use of the third component).

This proves the theorem in the case n 5 3. The case of an arbitrary n
can be reduced to n 5 3 as in Mushtari (1995).
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