Gleason-Type Theorem for Linear Spaces over the Field of Four Elements

Daniar Mushtari¹

Received July 4, 1997

We prove an analog of the famous Gleason theorem for additive functions on the orthomodular poset of all projections defined on an n-dimensional linear space over the field consisting of four elements. An essential part of the proof consists in a computer calculation.

1. INTRODUCTION

Let *F* and $G \subset F$ be two fields, *X* be a finite-dimensional linear space over *F*, and $\mathfrak{P}(X)$ be the orthomodular set of all (linear) projections on *X*. Let us consider a *G*-valued measure $\mu: \mathfrak{P}(X) \to G$ which is additive, i.e., $\mu(P + Q) = \mu(P) + \mu(Q)$ for $P,Q \in \mathfrak{P}(X)$ with PQ = QP = 0. Our goal is to extend (when possible) the function μ to a *G*-valued additive functional defined on the linear space over *G* generated by $\mathfrak{P}(X)$.

Such a theorem was proved when G and F coincide with the set \mathbf{Q} of rationals or a residue field (Mushtari, 1995). But, for extending the result of (Mushtari, 1989) to some classes of topological linear spaces we need to consider the case $\mathbf{G} = \mathbf{Q}$ and F being an extension of \mathbf{Q} . Unfortunately, we have not managed to prove such a theorem. In this paper, we try to elaborate the technique we need in a simpler case.

2. THE THEOREM

Theorem 1. Let X be a finite-dimensional linear space over the field F_4 consisting of 4 elements, dim $X \ge 3$, F_2 be the field $\{0, 1\}$, and $\mu: \Re(X) \rightarrow$

¹Institute of Mathematics and Mechanics, Kazan University, Kazan, 420008, Tatarstan, Russia.

127

 F_2 be a measure. Then μ admits an F_2 linear extension to the set UL(X) of all F_4 -linear operators with the trace belonging to F_2 .

Proof. The proof essentially depends upon the results of a computer calculation. We omit the calculation and only present its result. As in the proof of the classical Gleason theorem, we only have to consider the 3-dimensional case. We notice also (Mushtari, 1995) that we have to really prove that the restriction of μ to the set of all 1-dimensional projections is uniquely determined by the values of μ on a fixed Hamel basis in the F_2 -linear space UL(X). Note that the F_2 -dimension of UL(X) is equal to 17.

Step 1. The case $X = F_2^3$. The number of one-dimensional projections equals 28. The number of all bases equals 28. Every such basis $\{e, f, g\}$ (together with its biorthogonal one $\{e', f', g'\}$ defines the three mutually orthogonal projections $e' : \otimes e: x \mapsto e'(x)e, f' \otimes f'$, and $g' \otimes g$. Since $\mu(e' \otimes e) + \mu(f' \otimes f) + \mu(g' \otimes g) = \mu(Id)$, every such basis defines an equation for μ . It can be readily verified that the rank of this system is equal to 19. So, the values of μ on some nine linearly independent projections determine the μ on \Re (F_2^3) uniquely.

Step 2. The case $X = F_4^3$. What does Step 1 provide? Let us consider an arbitrary basis $\{e, f, g\}$ in F_4^3 with the biorthogonal $\{e', f', g'\}$ and the set $\mathfrak{P}_2(\{e, f, g\})$ of all projections *P* of the form $P = (\alpha'_1e' + \alpha'_2f' + \alpha'_3g')$ $\otimes (\alpha_1e + \alpha_2f + \alpha_3g)$, where all α_i belong to F_2 . By Step 1, μ is uniquely determined on \mathfrak{P}_2 ($\{e, f, g\}$) by its values on nine basic projections, for example:

$$P_{1} = e' \otimes e, \qquad P_{2} = (e' + f') \otimes e, \qquad P_{3} = (e' + g') \otimes e$$

$$P_{4} = (f' + e') \otimes f, \qquad P_{5} = f' \otimes f, \qquad P_{6} = (f' + g') \otimes f$$

$$P_{7} = (g' + e') \otimes g, \qquad P_{8} = (g' + f') \otimes g, \qquad P_{9} = g' \otimes g$$

Now we have to prove that the values of μ on $\{P_i: i \leq 9\}$, where $\{e, f, g\} \in F_2^3$ and on some additional eight projections uniquely determine μ on the whole $\mathfrak{P}_2(F_4^3)$.

Denote $F_4 = \{0, 1, i, i^{-1}\}$, wherein $i^2 = i + 1 = i^{-1}$, $i^{-2} = i^{-1} + 1 = i$. Let us consider all bases in F_2^3 . To any such basis $\{e, f, g\}$, we add the six bases in F_4^3 , namely

$$\{ie, f, g\}, \{e, if, g\}, \{e, f, ig\}, \{e, if, ig\}, \{ie, f, ig\}, \{ie, if, g\}$$

and add the set $\mathfrak{P}_2(\{e, f, g\})$ of 12 projections, namely,

$$\begin{split} \tilde{P}_1 &= (i^{-1}e' + f') \otimes ie, \qquad \tilde{P}_2 = (i^{-1}e' + g') \otimes ie, \qquad \tilde{P}_3 = (i^{-1}f' + e') \otimes if \\ \tilde{P}_4 &= (i^{-1}f' + g') \otimes if, \qquad \tilde{P}_5 = (i^{-1}g' + e') \otimes ig, \qquad \tilde{P}_6 = (i^{-1}g' + f') \otimes ig \end{split}$$

$$\tilde{P}_7 = i^{-1}e' \otimes (ie+f), \qquad \tilde{P}_8 = i^{-1}e' \otimes (ie+g), \qquad \tilde{P}_9 = i^{-1}f' \otimes (if+e)$$
$$\tilde{P}_{10} = i^{-1}f' \otimes (if+g), \qquad \tilde{P}_{11} = i^{-1}g' \otimes (ig+e), \qquad \tilde{P}_{12} = i^{-1}g' \otimes (ig+f)$$

We have the six sets $\mathfrak{P}_2(\{ie, f, g\}), \mathfrak{P}_2(\{e, if, g\}), \ldots, \mathfrak{P}_2(\{ie, if, g\})$. It is easy to see that bases (of nine elements) in these sets can be chosen so that all their elements belong to $\{P_i: i \leq 9\} \cup \mathfrak{P}_2(\{e, f, g\})$. We denote by $\mathfrak{P}_2(\{e, f, g\})$ the union of all these six sets and denote $\mathfrak{P}_2(\{e, f, g\}) = \mathfrak{P}_2(\{e, f, g\}) \cup \mathfrak{P}_2(\{e, f, g\})$. We denote by \mathfrak{P} the direct sum of all sets $\mathfrak{P}_2(\{e, f, g\})$ for all bases in F_2^3 . There are 28 bases in F_2^3 . The 12 basic elements correspond to every basis. So, \mathfrak{P} contains 28×12 elements.

Now, we describe the equations which connect the values of μ on \Re . Let us consider a projection $P = (i^{-1} a' + b') \otimes ia$, wherein $a, b \in F_2^3$, $a' \in (F_2^3)', b'(a) = 0$. If P belongs to $\Re_2(\{x, y, z\})$, then $\mu(P)$ is uniquely determined by the values of μ on $\Re_2(\{x, y, z\})$ (and on the set $\{P_1: i \leq 9\}$). It is easy to see that P belongs to seven sets of projections $\Re_2(x_1, x_2, x_3)$, where either $a = x_i, a' = x'_i, b \in \text{Lin}(x_j, x_k; j, k \neq i)$, or $b = x_i, a \in \text{Lin}(x_j, x_k; j, k \neq i)$. The P may be represented as $P = [(a + b) + ib] \otimes a'$ and thus belongs to seven other sets, $\Re_2\{(x, y, z)\}$. We can calculate $\mu(P)$ by using 14 different bases. This gives 13 equations which connect the values of μ on \Re . Eventually, we obtain 13 \times 84 different equations. The computer calculation shows that the rank of the system is equal to 328.

We now summarize the result of computing. Denote

$$\mathfrak{B}_2 = \bigcup \{\mathfrak{B}_2(\{e, f, g\}): \{e, f, g\} \text{ is a basis in } F_2^3\}, \qquad \mathfrak{B}_2 = \mathfrak{B}_2 \cup \mathfrak{B}_2$$

The μ on \mathfrak{P}_2 is uniquely determined by the values of μ on every basis of 17 elements [9 basic elements in \mathfrak{P}_2 and 8 (= 336 - 328) basic elements in \mathfrak{P}_3].

Since $\{1, i\}$ is a basis in F_4 , every one-dimensional projection on F_4^3 admits the representative $P = (i^{-1} a' + b') \otimes (ia + b)$, where $a, b \in F_2^3$ and $a', b' \in (F_2^3)'$ satisfy one of the following:

(i) b'(a) = a'(b) = b'(b) = 0, a'(a) = 1(ii) b'(a) = a'(b) = b'(b) = 0, b'(b) = 1(iii) b'(a) = a'(b) = b'(b) = a'(a) = 1(iv) b'(a) = a'(b) = 1, b'(b) = a'(a) = 0

It is easy to see that \mathfrak{P}_2 consists of all projections $(i^{-1} a' + b') \otimes (ia + b)$ satisfying (i) or (ii). The case (iii) can be reduced to (i) or (ii). Actually, by using $i = i^{-1} + 1$ and $i^{-1} = i + 1$, we obtain

$$P = (i^{-1}a' + b') \otimes (ia + b) = [i^{-1}(a' + b') + a'] \otimes [i(a + b) + a]$$

The case (iv) is a little more difficult. It is more convenient to represent P as $P = (i^{-1} y' + x') \otimes (ix + y)$, where $x, y \in F_2^3$, $x', y' \in (F_2^3)'$, y'(x) = x'(y) = 0, and x'(x) = y'(y) = 1. Obviously, in this case, P is orthogonal to $P_1 = (i^{-1} x' + y') \otimes (iy + x)$. Consider the basis $\{x, y, z\}$ in F_2^3 with the biorthogonal basis $\{x', y', z'\}$. Also consider the basis $\{\xi = ix + y, \eta = iy + x, \zeta = z\}$ in F_4^3 with the biorthogonal basis $\{\xi' = i^{-1} y' + x', \eta' = i^{-1}x' + y', \zeta' = z'\}$. Now, we construct a basis in $\mathfrak{P}_2(\{e, f, g\})$ whose elements belong to \mathfrak{P}_2 . This proves that $\mu(P)$ is uniquely determined by the values of μ on \mathfrak{P}_2 . Actually, the basis we need consists of the following projections:

$$P_{1} = (\xi' + \eta') \otimes \xi = (x' + y') \otimes [i(x + y) + x]$$

$$P_{2} = (\xi' + \eta') \otimes \eta = (x' + y') \otimes [i(x + y) + y]$$

$$P_{3} = (\xi' + \zeta') \otimes (\eta + \zeta) = [i^{-1}y' + x' + z'] \otimes [iy + x + z]$$

$$P_{4} = (\eta' + \zeta') \otimes (\xi + \zeta) = [i^{-1}x' + y' + z'] \otimes [ix + y + z]$$

$$P_{5} = \zeta' \otimes \zeta$$

$$P_{6} = (\xi' + \zeta') \otimes \zeta$$

$$P_{7} = (\zeta' \otimes (\xi + \zeta))$$

$$P_{8} = (\eta' + \zeta') \otimes \zeta$$

$$P_{9} = \zeta' \otimes (\eta + \zeta)$$

(Observe that we have made use of the third component).

This proves the theorem in the case n = 3. The case of an arbitrary n can be reduced to n = 3 as in Mushtari (1995).

ACKNOWLEDGMENTS

The author thanks P.G. Ovchinnikov for valuable comments. This work was supported by Russian Foundation for Fundamental Research, grant no. 96-01-01265.

REFERENCES

- Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics, 6, 885–894.
- Mushtari, D. (1989). Projection logics in Banach spaces, Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Matematika, No. 8, 59–70.
- Mushtari, D. (1995). Gleason-type theorems for signed measures on orthomodular posets of projections on linear spaces, *International Journal of Theoretical Physics*, 34, 1627–1635.